Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In 2013, Lee, Li, and Zelevinsky introduced combinatorial objects called compatible pairs to construct the greedy bases for rank-2 cluster algebras, consisting of indecomposable positive elements including the cluster monomials. Subsequently, Rupel extended this construction to the setting of generalized rank-2 cluster algebras by defining compatible gradings. We find a class of combinatorial objects which we call tight gradings. Using this, we give a directly computable, manifestly positive, and elementary but highly nontrivial formula describing rank-2 consistent scattering diagrams. This allows us to show that the coefficients of the wall-functions on a generalized cluster scattering diagram of any rank are positive, which implies the Laurent positivity for generalized cluster algebras and the strong positivity of their theta bases.more » « less
-
We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.more » « less
An official website of the United States government
